1引言
本文根據我們多年從事直流系統開發設計及現場應用經驗,試圖對后備蓄電池組的充電方式進行一些探討,,希望能起到拋磚引玉的作用,研究出一種更加合理的蓄電池組充電方法。
2現今蓄電池組充電方式存在的缺陷
在現今大部分后備電源(直流系統,ups等)中能量的存儲都是用蓄電池組來實現的。那么作為不間斷供電的最后一道保障的蓄電池組的性能就顯得至關重要了。囿于半導體變流技術及成本的原因我們一直采用的充電方式是如下圖所示的單充電機對整組串聯蓄電池充電。
充電機以恒壓限流方式永遠與電池組并聯在一起,理論上當電池組容量損失后,充電機將自動補充,但在實際應用中我們發現這種系統存在以下幾方面問題。
首先,單體蓄電池特性存在較大差異,即便是同一批出廠的蓄電池其特性也偏差較大(在國產電池中表現的尤為突出),因此在運行中將其作為一個整體一起充放電,無法根據單電池運行參數運行狀態進行充放電,勢必造成某些電池過充電或欠充電,也可能引起過放電,這也是為什么蓄電池在成組運行時普遍達不到標稱壽命的重要原因之一。
其二,在此種運行方式中檢測單體蓄電池的電壓、內阻是比較困難的。現在普遍采用的是單獨加裝蓄電池檢測裝置,但蓄電池檢測裝置又不能很好的和充電機配合。從以上兩點我們可以看出在此系統中按蓄電池狀態(電壓、內阻、剩余容量、溫度等參數)及充電曲線對蓄電池進行管理只不過是一句空話。另外單獨加裝蓄電池檢測裝置也勢必造成成本的上升。
其三,隨著半導體技術的進步,高頻開關電源以其體積小,重量輕,效率高,噪聲小的優勢大有取代傳統晶閘管整流電源的趨勢,但是采用如方案一中的充電方式,因為充電機需要提供較高的充電電壓和較大的輸出容量,對器件和技術以及工藝要求很高,大家都知道IGBT是很難超過20KHz的,而MOS-FET如果用于大電流回路中起結壓降又很大,發熱量也就很大,所以限于器件及工藝原因單體高頻開關電源(>20KHz)目前輸出容量超過6KW是很困難的,所以大多采用小模塊并聯均流的運行方式,但模塊數量和復雜程度的增加也就帶來了可靠性的降低,為此又提出了N+1冗余備分的概念,這就陷入了一個技術上的惡性循環,頭痛醫頭,腳痛醫腳。
其四,請大家注意由于鎘鎳蓄電池存在記憶效應,它并不適于此種運行方式。但因為鎘鎳蓄電池的高倍率放電能力,為了追求低成本我們在為數不少的此種系統中采用了鎘鎳蓄電池,這是錯誤的。因此鎘鎳蓄電池不適用于浮充電方式運行,我們也就不過多討論了。
3關于蓄電池組充電方式的一種理想的解決方案
那么是否有一種更加完善的解決方案呢?筆者經過多次推敲思考,提出以下方案供大家探討,稱不上嚴密,僅僅是一種思路。其原理如下:
大家可以看到在此系統中蓄電池的充電和檢測是以每節為單位進行的,所有充電及電池檢測模塊都含有處理單元,自行處理充電及檢測過程。所有模塊均由監控單元通過通訊總線根據電池運行參數及狀態統一協調進行。正常運行時每組充電模塊串聯形成一個整體電源為負荷供電,并且對每個蓄電池進行浮充電,當交流電源停電時蓄電池將為負荷提供電源。所有充電模塊及電池采用熱插拔可抽出式結構,對模塊及蓄電池的更換和檢修將不會影響系統的運行。在本系統中以上三方面問題將會得到很好的解決。
首先,在本系統中單節蓄電池的充電是獨立進行的,在每個充電模塊完全可以結合每節蓄電池的運行參數及運行狀態科學的對每解蓄電池進行充放電,避免了因蓄電池參數不一致引起過充電,欠充電,以及過放電等問題的發生,保證了電池的使用壽命。
其二,在本系統中,每節蓄電池的檢測和充電處于同一模塊中,有機的結合在一起。一方面電池檢測部分可以通過控制充電部分輕易實現電池電壓、內阻的檢測。另一方面充電部分又可以根據檢測單元測得參數(包括單電池內阻、電壓、溫度、PH值)對電池進行合理的充電。真正實現了按蓄電池充電曲線結合其運行狀態進行管理的思路。
注:文章內容和圖片均來源于網絡,只起到信息的傳遞,不是用于商業,如有侵權請聯系刪除!